If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3600+x^2-150x=0
a = 1; b = -150; c = +3600;
Δ = b2-4ac
Δ = -1502-4·1·3600
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-90}{2*1}=\frac{60}{2} =30 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+90}{2*1}=\frac{240}{2} =120 $
| 7x=14x+1 | | 7x=14x+` | | 15x+59=3(5x+19) | | 7z+2)2+16=0 | | 16x+10((98-16x)/10)=98 | | (1+v)(4v+6)=0 | | 2(x+1)+3=21 | | -8/3+3/7x=-5/2 | | 2x+12.36=3 | | 2x+12,36=3 | | 18+16n-15=12n-17 | | -10c-9=-7c+9 | | 14y-18.81=-37 | | -6+2k=2k+1 | | 5x+4=2x+32 | | 10-10b=10b+10 | | 0=8k-8k | | 7y-25.08=16 | | -s+2=-s-9 | | 7b-3b+4=12 | | -6-6h=-6h-6 | | -7+9w=9w | | 7f=-4+7f | | 3t^2+30t=3t | | 425=2*130+2w | | 3t-7=3t | | 425=2X130+2w | | -19.76x-1052=-92.57x+277 | | -6-6j=-4j | | -7(3x+4)=5(9x+5) | | 18z=16+19z | | 4=c+5c^2 |